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SUMMARY

A theoretical solution is presented for the determination of
the combinations of direct axial stress and torslion which cause
thin-walled cylinders with either simply supported or clamped edges
to buckle. This theoretical solution is used in conjunction with
available test data to develop empirical curves end formulas for use
in design. Comparlsons are made with theoretical and empirical
solutions obtained In othsr investigations.

INTRODUCTICN

The determination of the combinations of direct axial siress
and torsion which cause thin-walled cylinders to buckle is treated
in the present paper. Cylinders in torsion buckle &t a siress
slightly less than the theoretical siwress (reference 1) and cylinders
in compression buckle at & stress considerably less than the
theoretical stress (reference 2). It therefore eppears that the
theoretical solution would be in good sgreement with the experimental
results when the buckling is due mainly to torsion but would require
modifications when the buckling is to eny eppreciable extent due to
compression.

Empiricel epproaches to the problem have been made previously
(references 3 to 5) and interaction formulas have been proposed for
uge in design. These formulas are somewhat limited as to the range
of applicability because of the limited renge of dimensions of the
test specimens.

In the present paper theoretical interaction curves are derived
(eppendix A), the test date of references 3 to 5 are re-examined,
end finally empirical interaction curves and formulas that are
rational modifications of the theory are developed. The present
results can thersfore be used over a much wider range of cylinder
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dimensions than could previously aveileble results. In the enalysis
glven herein the theoreticasl results are first described and then
modifications are Introduced to bring the resulte into agreement with
avallable experimental data.

SYMBOLS
m, n, J -integers
r radius of cylinder
% thickness of cylinder wall
n displacement of point on median surface of cylinder'in
axial (x-) direction '
v displacement of point on median surface of cylinder in
circumferential (y-) direction
W . displecement of point on median surface of cylinder in
radial direction; positive outward
X : axial coordinate of cylinder
Y clrcumferentiel coordinate of cylinder
| ' Et3
D flexural stiffness of plate per unit length (7
: 12 (l - p?)
E Yomng's modulus of elasticity
L length of cylinder
Q operator defined in appendix A
o [ 2 O
(LT - 2 (L) £\fy - 2
Z curvature Parameter (rt V1= u" or - _...t\/l p)

By By coefficients of terms in deflection functions

" ' ' 2
kD
124

kg ghear-stress coefficlent appearing in equation 7 =
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kx direct-exial-stress coefficlent appearing in
erteD
eguation oy = —5
It

. «2)2 1720k
o = gg[(n‘? i 32) i (2 + g2)2 nzkx]

(Rs> empiricel shear-stress ratio (ratio of shear sitress present
exp to empirical critical shear stress In absence of other

stresses)
QRB> theoretical shear-stress ratio (ratio of shear stress
th present to theoretical criticel sheer stress in absence

of other stresses)

(Rx) empirical direct-axiael-stress ratio (ratio of direct
exp axial stress present to empirical critical direct Co
.exiel stress in absence of other stresses)

G%x theoretical direct-axial-stress ratio (ratio of direct
th axial stress present to theoretical critical direct
stress in asbsence of other stresses)

Vm, .Wm . dePlection functions defined In appendix A L
B = %

» half weve length of buckles in circumferential direction

i l Poisson's ratio ' - o

Ox direct axial stress in c;ylinde_r wall

T . ~ shear stress .:Ln cylinder wall _

L L L -
Vh = a + a a : . .
BxH %‘1‘.—2 a¥2+ By"L

v% - inverse of Vh, defined by vk o= w
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RESULTS AND DISCUSSION

Theoretical interection curves.~ The combinations of shear and
axiel stress which cause cylinders to buckle mey be obtalned from
the equations

2,
L™t
and

e

a
R

vhen the stress coefficients kg and ky are known. The

theoretical combinations of shear-strese and axlal-stress
coefficients for cylindors with simply supported or clamped edges
ere given by interaction curves for a number of values of the
curvature perameter Z in figures 1(a) end 1(b), respectively.

For small values of Z, which describe very short cylinders,
the Interaction curves have vertical parts whlch are discussed in
gome detall in reference 6 end in appendix B of the present paper.
At slightly larger values of Z the curves have the general shape
of a parsbole and at stlll lerger values of Z the curves tend to
straighten out. Computations show that curves plotted in stiress-
ratio form for simply supported cylinders are substantlally
Independent of the value of Z from Z = 30 to at least Z = 1000,
the largest value of Z +thst was checked. Such interaction curves
were not camputed for cylinders-with clamped edges at large values
of Z; however, at large velues of Z, the critical stresses in
both shear alone and in compression alcne are sybstantially
independent of the type of edge support. - The Interaction curve
therefore can reasonably be assumed to be almost independent of
the type of edwe support. The interactlon curves for cylinders
having values of Z greater than 30 with elther simply supported
or clamped edges may be approximated in the compression range by a

straight line from (Rx)th =1 to (Rs) = 1 end early in the

tengion range by a straight line having & elope of -0.8 passing
through (Rs)th =1 (see fig. 2). The denominators of the stress

ratios Css)th end csx)th are the critical stresses for torsion
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alone and for axial compression alone, which may be obtained from
the. theoretical curves of figures-3 and 4, taken from references 1
end 2, respectively: The theoretical mteraction data that have
been computed are given in table 1.

2

t
two circumferen’cial half waves and the curves of figure 3 no longer
apply (see reference 1). The curves of figure &, which describe

the: local insta‘bility of cylinders, do not apply to very long
‘cylinders which fall as Euler colmms (Euler buckling occurs for

e 2
. Very long cylinders in torsion (Z > about 105 ) bu.ckle with

2> about T 71‘2 for simply supported cylindrical colums) « The

present paper is solely concerned with short and moderately long
cylind.ers ~ say, Z< T ’{:“2

Bmpirical intersction curves.- As cylinders of moderate or
large curvature buckle in compression at a streses considersbly less
then the theoreticel stress, the curves in Pigures 1(a) end 1(b) end
the interaciion data of teble 1 must be modlified to give results
applicable to actual cylinders. The requirement that for large
velues of Z the empirical interaction curve should asgree aepproxl-
metely with the theoreticel curve near the kg-axis and yet cross

the ky-axis at only & fraction of the thecretical ky-intercept

suggests the use of a curve of the parabolic type in the compression
range. Availeble experimental data indicate thet the analysis
required to determine the type of parabola most satlsfactory from a
_theoretical point of view for each particulaer cylinder is not
Justified for practical purposes because of the scatter of the test

pointe and that the use of the simple parabola (Rs) 24 "\Rx)exp =1

is satisfactory.

The simple parsbolic Inbteraction curve ls completely determined
when the intercepts corresponding to pure torsion and pure compression
are known. These intercepts may be obtained from the empirical
curves of figures 3 and 4. The empirical curves for cylinders under
compression were obtained from reference 2, and the empirical curves
for cylinders under torsion were obtained by fairing a curve 'bhrough
the test points glven in reference 1.

References 1 a.nd 2 indicate that ’cheory and experiment are in
good agreement for either torsion or compression alone for very
short cylinders (Z £ 1 for simply supported edges end Z =5 for
clamped edges). In these renges of Z, therefore, the theoretical

LU )
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intersction curves (figs. 1(a) and 1(b)) end values fram table 1

. may be used. At larger values of Z parabolic interaction ocurves
with intercepts obtained from the empirical curves of figures 3
end 4 are recoamended for use In the compression renge.

Tn the tension range the theoreticel Interactlon curves may be
expected to be in resscneble agreement wlth experimentel results
becausge axial tension tends to minimize the effects of initial
- sccentricities, which are generally considered to be responsible for
the large dlscrepenciss between the thsorstical and the experimental
values of criticael compressive stress. Therefore, under combined
torsion and moderate tension - that is, the tension range for which
computed results are avallable - a conservetive approximation to the
buckling stress which may be used for the design of cylinders of
moderate or large curvature 1s a giralght line. This stralght line
has the same slope as the theoretical interactiomn curve in the
tension range and passes through the point corresponding to buckling
of a cylinder in torsion alonse as obtained from the emplirlcal curve
of figure 3.

INTERACTION FORMULAS

On the basis of the preceding discussion of the interaction
curves, the criticel combinations of torsion and direct axial
gtress for thin-walled cylinders of moderate or large curvature
may be expressed approximately in stress-ratio form by the following
simple formulas..

Theoretical inﬁeraction formulag.- Theoretical interaction

formules for 30 < Z < 7.7r—§- cen be expressed by the following

equationa: Tor shear end compression (0 < (Rx)tﬁ < l) s

<Rs)th " (Rx)th 7

end for shear and modevate temsicn (-1 3 (Rx)th < o),

(Re),y, + 08(ms),, = @)
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The theorsticel critical siresses of cylinders in torsion elone end
cylinders in axiel compression alone cen be obtained by the use of
Figures 3 and 4, respectively. Figure 2 shows that equations (1)
and (2) avre fairly good approximetions to the theoretical results.

Empirical interaction formulas.- Empirical interaction formulas
can be expressed by the following equatlons: for shear and '

compression (0 < (Rx) < 1) P

oxXp
(Rs>exp2 + (Rx)exp =1 . (3)

end for shear snd moderate tension (-1 S (Rx)th < 0) ,

R\ +0.8R) =0.9 ()
(. S:)'th ( I)th '

| S 2 .
Equation (3_) is valid vhen 1l < Z < 7.7;5 for cylinders with simply

2
supported edges and when 5 < Z < 7.71—5 for cylinders with clamped
t

2
edges; equation (&) is valid when 30< Z< 7’{?5 for cylinders
with both simply supported and clemped edges. : . -

) The empirical criticel stresses of cylinders in torsilon slone
end cylinders in axial campression alome can be obtained by the use
of figures 3 and 4, respectively. At values of Z < 30 the
theoretical solution may be used for design purposes in the tension
rengse s .

COMPARTSCN OF EMPIRICAL INTERACTICN RESULTS WITH TEST
DATA FRCM OTHER INVESTIGATIONS '
The accuracy of the empirical resulte ls checked by a comparlison

with test data in Tigures 5 end 6. In figure 5 test data obtained
fyrom reference 3 for celluloid cylinders are given for several



8 NACA TN No. 1345

selected values of Z. Fach cylinder was buckled several times
under different combinations of torsion and axial stresa and the
results ere presented directly in stress-ratlo form. These stress
- ratios are based upon the observed critical stressee of the
cylinder in torsion alone and in axlal compression alone and
therefore the results serve as & check only on the shape of the
interaction curve and not on the actual stresses. In filgure 5
the assumption of & parebollc interaction curve is shown to be
slightly conservative. The parabolic interaction curve in
figure 5 corresponds to the more conservative of two formulas
suggested in reference 3 by Bruhn and is the ssme as the formula
suggested by Ballerstedt and Wagner (reference 5) for the
compreesion range. ' :

Test data for several values of Z obtained by Bridget In
reference 4 for the buckling of brass and steel cylinders under
combined torsion and axlial stress are plotted in stress-ratio form
in figure 6. Because a different cylinder wee used for each
combination of loads, the date show considersbly more scatter
than those of reference 3. The reduction of the data from stresses
to.stress ratlos by the use of the empirical curves of figures 3
and b, however, provides a.check on the accuracy of the points
corregponding to shear alons and compression alone which is not
provided by the test data of reference 3.  The emplrical inter-
action curve, also shown in figure 6, lles near the center of
the ratrer wide scattier band.

Ballerstedt and Wagner (reference 5) tested a number of very
thin brass cylinders under combined torsion and tension and
concluded that for the design of cylinders under such loading
conditions the following equation may be used:

Be), + 05(a), =2 o

Results cbitained by use of equation (5) eppear to be in very
satisfactory agreement wilth experimental results when the
equation is used in conjunction with the formules given in
reference 5 for buckling in pure compression and purse tension;
vwhen equation (5) is used in conjunction with the more accurate.
values given in figures 3 and L4, however, the equation is very
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meconservative. The test data of reference 5 compere favorebly
with the present recommended design curves when the stress ratios
are recomputed by use of the empiricel r=ltlcal stresses glven in

figures 3 end L.

Langley Memorilal Aerconautical Laboratory
National Advisory Committes for Aeroneutlcs
langley Field, Va., March 20, 1947
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APPENDIX A~ -
THEORETICAL SOLUTICN

Equation of eguilibrium.- The combinations of shear end axial
gtrsse which will cause a cylinder to buckle may be obtained by
solving the following equation of equilibrium (see reference T):

DV + ¥ —-—+2'rt--——-+ct§g£=0 (A1)
@ oxt dxdy ¥ ol

where x and y &are the coordinates indicated in the following
figure: :

Division of equation (Al) by D gives the equation

2

- Xy ;-f %—ig— =0 (42)

1278 .y dhw 2
Ve + 12 dx dy

e —

L’"‘ v a_JCE+ ka
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vwhere the dimensionless parameters 2, k,, and k., are defined by

2 —
L_ - ne
Z=r‘b\Jl )

'r'tZL2

Dn?

ksa

c x‘bLe

D2

kI=

Equation (A2) can be represented by
Qw = 0 : (A3)

where Q Ils deflined by

1222 -k o a2 8 2R

L .
=V O Loy T 9.
Q=VTE 3 T e 1F 5 oy T X 12 52

Method of solution.~ Equation (A3) mey be solved by using the
Galerkin method as given in reference 8. TIn the application of this
method, equation (A3) is solved by the use of a suitable series
expansion for w as follows:

w =>—_—‘j—i eln + T byl | (ak)
- H . - g

In equation (Ak) the functions Vi, Vp «..Vy, Wy, Wp «..Wy

individvally satisfy the boundery conditions on w bdbut need not
satisly the equation of equilibrium.
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The coefficients a, and b, are then determined by the equations

-

2n b
f f V,Qw 8x 4y = O
o Jo
22 b
f andexd,yno
o Vo

where n = 1,2,3, L

e ' (A5)

The boundary conditions considered in the present paper ave
as follows: For simply supported edges,

P .
W o= —-x—z- =v =0, and u is wrestrained;

and for clemped edges, ' T '

W= g—‘é == O,’ end v is mmstrained_._

Solution for cylinders with simply supported edges.~ The
following Infinite series expansion cen be used to represent exactly
the displacement w in the case of cylinders with simply supported
edges: , .

« : o0
- otn 1L} mrx ) mx
w = gin 3 &y 8in T= + cos by sin (A6)
oom=l .. m=1
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where A 1is the half wave length of the buckles in the
circumferential direction. Expression (A6) is equivalent to
. equation (A4) if . -

2
M

Yy = sin %’1 gin

|

> (A7)

nx
L

]

Wn = ¢O8 E%- gin

Substitution of expressions (A6} and (A7) into equations (A5) and -
Integration over the limites indicated give

i (=4

B .

5 2\2 127204 . 1. aﬁksZ mn '

on) (a + )7 + (2 + 2)F S w5 5=0
nin~ + 33’ B m=1

. (a8)

— . ot o

2 12720k o Bpicg T _ _mn |
(n2+32> +,(h(n2+§2)2 ol ﬂs)n;_i?mnemflma °

-

boen.

where

L
=3 |
nﬂl,2’3, s el

Equations (A8) have a solution in which the coefficients e, and

the coefficients b, are not all zero only if the following
determinent vanishes:
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&y 82 . a3 8 a5 af ees by b2 b3 by - b5 b5 ...
nel %BMl o o o o 0 .0 £ o f‘g 0 -3%
n=2| 0 %EJME 0 0 0 0 . -2 o0 ¢ o B o..
a3l 0 0 %'C-SM?’ 0 0 0 . O --g- o ¥ o £.
n=kf 0 0 O %le* o0 .. -1—1;- 0 -173 0 2_§o_ v S
=5 0 0 0 0 i"-%M,j 0 eee O .-%?L- o 2 o T..

o ko w.:f o 2 o
on=6f 0 0 0 0. 0 £Mg .. 0 -3 0 - 0 ..

. » . . . . » [} L] [} . . (Ag)
g l-'-__ __é. .. . . 1.- .
n=l} O -3 0 15 0 35 kle 0 0 0 0 O ees
2 6 20 L
n=2 ‘3‘ 0 '5 0 21 0 ger 0 k M2 0 O 0 0 L]

6 12 2 1
=3 0 & o - 0 £ .. 0 O XM, 0 O O ...
n=3 5 7 3
| £ o J:r-—e- 0 22 o ... 0 o o L-—Mh O 0 ves
ns5 0 ¥ o 2—90- 0 -32 ... 0o 0o o0 o -]JE-M 0 eee

£ 2 30 L
n=b 0 3 0 0 ees O 0 0 0 QkBM6"'
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wherse

w, = |02+ 69)° 4

10720
“l;(naz_*, 52)2 = ngkx

15

By e rearrangement of r;:ws and columng, the infinlte determinant
can be factored Into the product of two mutually equivalent Infinite

subdeterminants.

subdeterminant in the followlng equation:

a1
n=1l kLBMl
n=2 % .
n= | 0
n:--J-l-r %
n=>
n=6 565-
n=1L 0
n2| o
n=3{ O
n=k{ O
n=5{ O
n=6| 0

e« o = wlm

o

Gl= &

©

«1“(;

a5
o

10

T2

bg

LN
35

Wi

o

(X R} .bl aa b3

eee O 0 0 0

cby 2 ook
- %;M? g 0
oo Rm R
-% 0 -l,?- %_;‘Mh
SR ?-g-
s 0 -2 o

ah_ bs

The critical stress msy then be obtained from either

a6.'.-
0 O 0.
o 0 o
¢ 0 ..
0 0 .
O 0 dooe
¢ 0 ..
5
0 ‘35 LY
10
21 o ”e
2
0 “as g
o3
20 o..
g
0 ..
230
% LMs‘..

(410)
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The first approximetion, o'b'ba:lned from the second~order
determinent, is given by

- @)emlma o (A11)

The second approximation, obtained from the third-order
determinant, is given by

i - e L3 (a12)

; (%)2M1 * (‘25)2“3

The third approximation, obtained from the fourth-order
determinant, is given by

G2 - 2|8 e - (& + (5 - 5o

* MyMpMahgy, = 0. - (a13)

The shear-stress coefficient k; may be found in the verious
spproximations directly fram equations (All), (Al2), and (Al3) for
eny glven velues of Z, ky, and $. Because & structure buckles
at the lowest stress at vhich Insteblility occurs, the value of kg
1s found for a series of values of B. The minimwm velue of kqy
for the given values of Z end ky 18 then determined from a plot
of "ky egeinst B. Table 1 Bhows the convergence of the various

_epproximations for Xg.

Solution for cylinders wilth clamped edges.- A procedure

similar to that used for cylinders with simply supported edges may
be followed for cylinders with clemped edges. The deflection
function used 1s the following series:
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s
w = sin g}:; am[cos fm.;ITllzrz - Bos !.ru.L;Lhr;]
m=

+ cos I‘:}Z 'bm’;os'-(g—;i'—lﬁ}- - cos .(E_;"il)l‘.z-] (A1k)
m=1 ) , = '

\

Comparison of squation (Alh) with equation (AlL) shows
that i

o - . . _
T, < sin ;_grz_ cos (@ -Ll)fc:x; - cos (n +L12:tx

(A15)

- (n -~ Vnx + 1lnx
I*Inncos’-_t}lcos Bl - cos &

where n = 1’2,3, ses

When opsratlions equivalent to those carried out for the case
of simply supported edges are performed, the following simultansous
equations result:



For nel B
= m-12_, _(m+1? ]
+ - k - — =
al(QMO MQ) agh + ‘51m=2§,6bm[(111-1)2.-#4‘'fm+l)2--ltJ 0
For n=2 ’ .
_ (m - 1)? (m - 1)2 _(m+21)? (m + 1)2 )

M +M M "l‘k - - -
82(1' 5)  ouMs sml,3,5bm[(m-1)2-_1 m-12-9 (@+12-1 (m+ 1)2-9J °
For n = 3,k,5, ... :
an(Mn-l * Mn+l) B s ]

= (m - 1)° (m ~ )= (m + 1)° (m + 1)2

+ - - .

k";b’“&m-ne-m-nﬁ @-12-@+1)2 (@+2)2-(- 12 @+ 1)2-(@s02| 0
where mt n 1is odd.

For nel , %(AlS)
b ‘ - b - ..__.(21_"_113__ ._(m_"'__:_l-lg__ =
l(%+M2) 3 ksmgﬁam[(m—l)e-hq'(m+1)2-h °
For n=2 l .
= L2 2 2 2
bo(My + Mg - By - K Z (m -~ 1) o (m - 1) __(m+ 1) (m + 1) .
2(1 3) +3 Bmp1,3,5&m|_(m-1)2-'1 m-12-9 @+12-1 @+12-3| °
Far n = 3,4,5, ... _ ' ' |
oMo+ 150 ) - By - B

I N i e (m -2 e 1) (w + 1)

kai:fa”‘(m-lﬁ- @-1° @-1% @+ P @+ 12-(@- 12 (@t 1) (e 12| |
vhere min is odd

—d

GHET ‘ON NI VOVN
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and

7 72
b an <o) ﬁh(izz".' 2 nEkx}

The infinite determinant formed by these equations cen agein be
rearrenged so as to factor into the product of two mutually equivalent
infinite subdeterminents. The vanishing of one of these determinentg
lesds to the following equation:

a) by &g by, 85 b ..
n=l %;;(?MO*MQ = o 168 0 T o
n=2 % i;-@ifl%) -% ;i—;@ %%_‘ o .
n=3 -]ls.BMQ -2 11:-;(}42+Mh) % - T];;I“h -%—g- |
=0 B he M8 L9 BB
neb| -z 0 -%-%g— -i—';ms %—g% i—;@%m-() os
T T e

The first approximetion, obteined from the ‘sscond-order determinant,
is given by

kse = <%g>2<% + Me) (M.l + M3> (Aie)
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The second approximstion, obtalned from the third-order
determinent, is given by

2 (g + M) R 2y + 1) (e + 1y) - Meé] (419)

(@ e ) - 2B+ () (o + )

The third approximation, obtained from the fourth-order
determinant, 1s given by

. '*[( 28 - (BN - = o + )l + )
<1 ) (oo + Me) (e5 + 15) + 105) (1, + ug) (e + 1,

B e+ ) + ) - o) BBl + )

- 2Bl + ) - 2(R) (D e, + )

() 5l + ) + o[ (EIER) + (2) () e

IEM (M +M,+ MEMJ[ (M +M5)+MM] = (AEO_')

4

+-

As In the solution for cylinders with simply supported edges,
the value of %, hes to be minimized with respect to § for glven

values of Z end k,. Teble 1 showe the results of the various _
epproximations for kg.

Comparison of present solution with vrevious theorstical
golutions.- In figure T the solution giv.n by Kromm (reference 9)
is compared with the present theoretical solution for cylinders
with simply supported edges. Although the values shown for Kromm's
solution are obtained from small-scale curves and are therefore .
approximate, good agreement is Indicated between the results of h
reference 9 end the present solution.
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In figures 8(a) and 8(b) the results of the present paper are
compared with those of Legge*t (reference 10). The large o
discrepancies seen in figures 8(a) end 8(b) are believed mainly
due to the erroneous assuuption in refersence 10 that the theoretical
interaction curves are parabolic and - in the case of figure 8(b) -
to the further erroneous asswmption in reference 10 thet the cross
sections of cylinders with clamped edges in exial compression
remain circuler.
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APPENDIX B
VERTICAL PARTS OF THEORETICAL INTERACTION CURVES

At low velues of the curvature parameter Z the theoretical
iInteraction curves have vertical perts at a value of ki

corresponding to buckling in exial compression alome. (See
figs. 1{a) and 1(b).) These vertical parts indicate that some
phear stress may be appllied to cylinders at low vaelues of 2
without any redunction of the compressive stress necessary to

., cauge buckling. The velus of Z at which the vertical partis
of the interkction curves disappeer is the upper limit of the
renge of Z for which substitution of the value of ky for
pure compresslon into the expression for kg leads to real
values other than zero for kg

Cylinders with mimply supported edges.~ Equation (All)
Yepresents the first epproximation of the critical combinations
of shear-stress and axial-~stress coefficiente for cylinders with
simply supported edges. When kg 18 equal to zero, the minimum

value of k, which satisfies the resulting equation is found by
setting M; equal to zero and is glven by

) N .2\2 122? -
ky <l+B/) +11""(1+52)2 (B1)

This equetion is algo obtained as the exsct solution for a simply
supported cylinder buckling in pure aexial compression (reference 2).
The buckle pettern corresponding to the lowest buckling load at

low values of Z 1 that for vwhich B = 0. The substitubion

of B = 0 into equation (Bl) resulte in

[

kx-=1+-1-§-ﬁE (82)

One critical cambination of streass coeffliclents at low values
of Z 1is therefors
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2
127,

(B3)
ky = 0 -

Another approximate critical value of k, cen be found for

1277
k, =1+ &

by substituting this value of k, into equation (All) end by
letting B eapproach O, The value of kg for the foregoing.value

of k, 1
2
k2 = 6(35) (1 . 12_;@ (1;. ' ___1if> (k)

From squation (B4) it appears that, when k, has the value
indicated in equations (B3), k, depends upon Z in the following
menner: for values of Z <« X, k, =+ Tonstent; for values

8
Vi3 _
_ 8 . 5 X2
of Z 52’ kg = 0; and for values of Z qig, ks is imaginary.

Comparison of these values with equations (B3) indicates that the
interaction curves have vertical parits for valuss of Z in the
range

sl -
2% 55 (B5)

Similar calculetions with higher epproximetions for k give the

same vange of Z for this vertical part so that expression (B5)
may be considsred exact.
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Cylinders with clamped edges.~ An analysis for cylinders with
clemped edges similar to that used for cylinders with gimply
supported edges indicates that the Pirst approximstion for the
Interaction curves gives vertical parts ror

2
2 < 2r=
ER (86)

Expression (B6), unlike expression (B5), is not exact. Because
the first approximation, however, is very close to the exact
solution when a substantial emount of compression and little shear

ere present, expression (B6) represents a good approximatian to
the exact result. ' )
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TABIE 1

THEORETICAL COMBINATIONS OF SHEAR-STRESS AND AXTIAIL-STRESS

COEFFICIENTS AND WAVE LENGTHS OF BUCKLES

|

Pirst Second Third
A ky approximation | approximation | approximation |
kg B kg p ks I
Cylinders with simply supported edges
1 “l | mmee-- ———- 6.64] 094 =~meme | =m=m=
0 | ====-- ——— 5.42 886 5.41 | 0.865
g} - -——— 4 26 Bl mmmeem | —meme
1l.12 265 0 | mmeemoemmmmn ] mmmme e
1.12 0 0 | mmemeclecmmnn] cmmene  emees
5 ~2 8.9 1.15 8.12| 1.16 8.10[1.2
-1 784 | 1.07 T21] 1ol | =-m=== | —m===
1 5.40 89 5.11 G2 mememe | e
2 - 1+ .00 30 3.82 B0} =mmwem | =
2.5 3.12 5 3.04 5 mmmmem | e
3 2.11 67 2.09 BT | =mmmmm | ===
3.33 1.21 62 1.20 N s
10 -l 11.95 | 1.4 10.57] 1.42} 10.57 | 1.k2
-2 10.2 1.32 9.1 135 ==m==m | wmme-
2 6.26 | 1.15 5.83] 1.16| ======| ===-=
L L.21 | 1.06 395 1.06| ======f ====-
5 3.0k} 1.0 2,90 1.02] s=-eem| mm=--
6 1.78 97 1.75 96| memeen | mmmm-
6.66 .88 ) 92 B6 93| =-mmmm | -

NATIONAL ADVISORY
COMMITTEE FOR AERMNAUTICS
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TABLE 1 - Continued

THEORETICAL COMBINATIONS OF SHEAR-STRESS AND AXTATL-STRESS

COEFFICIENTS AND WAVE LENGTIHS OF BUCKLES - Contlnued

~

First Second Third
7 kx approximation | approximation] approximation
kg B ko B kg B
Cylinders with simply suprorted edges
'5 18 ula 1-9 15 033 1-95 15 031 200
5 11.62| 1.75 9.93| 1,78 |-==w==| ==va-
10 . 8,181 1.68 TOb] LTL | =~mmme | w=ne-
15 h‘o59 1-6 - 1!-.00 1'6 """""""
18 2.361 1.55 2.09] 1,55 | cwmeen| «-mow
20 08"(' 1 -53 077 1 053 """"""
100 -4o 51.0 2.9 41,7 | 31 4i.0 | 3.3
=20 42.5 2.8 .9 | 3.2 3.6 | 3.1
20 25,2 2.7 208 [ 2.9 {e-=w==| =ov-n
Lo 16.2 2.6 13.2 | 2.75 |=mmem=| wmmae
60 6.8 2,6 54¢33] 267 |======]| »==--
65 h- 05 2 06 3 0 2 07 """"""
6606 3-5 2.6 2-2 2-8 """"""
1000 |-400 277.0 5.55 | 224.2 | 6.2 {220.66| 6.5
~200 233.5 5.5 |189.5 | 6.1 |186.k | 6.35
200 144.8 5.3 11172 | 5.95 [11k.56] 6.k
400 99.0 525] T8.5 | 6.00 |~w==n=] «=ca-
500 T5.6 5.25| 58. 6.00 |======] =ec=e-
600 51.1 5.451 35.8 | 61 |-==eee] =ome-
650 36 2 5 l6 23 2 6 sl frememe] mceaw
666 30.0 5.65| 18.65] 5.95 | 15.25| 7.0

NATIONAL ADVISORY
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TABLE 1 ~ Concluded

THEORETICAL. COMBINATIONS OF SHEAR-STRESS AND AXTAL-STRESS

COEFFICIENTS AND WAVE LENGTHS OF BUCKLES -~ Concluded

28

7 Filrst approximation Second approximation
= s B kg B
Cylinders with clamped edges
1 ) 13.15 2.0 12.66 2.17
3.0 6.02 o7 5.96 «T15
3.7 k.75 A1 4.73 J15
3.9 k.20 26 .19 275
4,1 3.36 0 |  eeme- “—eme
’4 ‘l O 0 """""
2 -L.,0 13.18 2.03 12 .69 2.19
3.0 6.11 .72 6.04 (3
3.7 .91 45 4.88 A7
.0 .13 255 4,12 26
L.2 3.32 0 |  emew cemea
k.2 0 0 | emees | emees
5 -5 1h.17 2.24 13.59 2.4
3 6.66 95 6.56 97
4.2 4 .86 55 L .82 55
4.8 3.01 0 | emee= ] eemea-
L.8 0 0 | weeee | weees
10 -6 15.52 2.6 14.79 2.8
4 6.96 1.2 6.82 1.25
6 L 75 b 43 .76
7.2 1.50 0 | mmee= | eeee-
7 02 0 O  } eeeee | eeee-
30 -20 27 .54 k.90 254k 5.45
14 6.70 2.6 6.25 2.60
18 3.60 2.15 3.34 2.25
21 ‘5 (o] 1 028 ---------

NATIONAL ADVISORY
COMMITTEE FOR AERCNAUTICS
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Figure 1,- Theoretical combinations of shear-stress and axial-stress
coefficients for buckling of cylinders:
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Figure 2.- Comparison of approximate theoretical interaction equation
and present solution for 72 > 0. .
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Figure 3.~ Critical stress coefficients for buckling of cylinders

in torsion.
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Figure 4.- Critical stress coefficients for buckling of cylinders in
axial compression,
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Figure 5.~ Comparison of empirical interaction curve with test data
presented by Bruhn.
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Figure 6.- Comparison of empirical interaction curve with test data
presented by Bridget.
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Figure 7.- Comparison of Kromm’s solution with present sclution for
simply supported cylinders of Z > 100.
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(b) Clamped edges.

Figure 8.~ Comparison of Leggett’s solutions with present solutions

for cylinders.



